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Abstract 
Skeleton-based action recognition is attracting more and more attention owing to the gen-

eral representation ability of skeleton data. The Graph Convolutional Networks 

(GCNs)methods extended from Convolutional Neural Networks (CNNs) are proposed to 

directlyextractspatial–
temporalinformationfromthegraphs.PreviousGCNsusuallyaggregatethe skeleton 

information locally in the vertex domain. However, the focus on the localinformation 

brought about the limited representation ability in some actions containingoverall 

dynamics in both spatial and temporal, which pulled down the overall accuracy ofthe 

model. Therefore, this paper proposes a more comprehensive two-stream GCN archi-

tecture containing the vertex-domain graph convolution and the spectral graph 

convolutionbased on Graph Fourier Transform (GFT). One stream utilizes an efficient 

vertex-domaingraph convolution to obtain effective spatial–temporal information via 

Graph Shift Blocks(GSB), while the other brings the global spectral information from our 

improved ResidualSpectral Blocks (RSB). According to the analysis of the experimental 

results, the 

actionmisalignmentforcertainactionsisreduced.Moreover,alongwithotherGCNmethodsthato

nly focus on spatial–temporal information, our RSB strategies help improve their per-

formance. DD-GCN is evaluated on three large skeleton-based datasets, NTU-RGBD 

60,NTU-RGBD 120, and Kinetics-Skeleton. The experiment results demonstrate a 

compara-ble ability to the state-of-the-art. 

KeywordsActionrecognition·Skeleton·Graphconvolutionalnetworks·Dual-domain·Spatial–
temporal· Spectral 

 
1 Introduction 

 
Action recognition is a challenging task in the field of computer vision. And it is at 

theforefront of applications to understand the human social activity (Islam and 

Iqbal2020).ActionrecognitionbasedonRGBimages/videoshasbeenwidelyresearchedwithdee

p learning methods, such as Convolution Neural Networks (CNNs). The motivation of 

mostaction recognition algorithms is to extract spatiotemporal feature representations 

fromRGBvideos.Andthen,aclassifieristrainedtodistinguishdifferentactions.SimonyanandZi

sserman (2014) proposed a two-stream method to extract spatial and temporal informa-

tion separately. Also, to obtain temporal features, Ji et al. (2013) extended the 

traditional2D-CNNto 3D-CNN with a 3D convolutionkernel.Meanwhile, owing to the 

concise and compelling data source, skeleton-based 

actionrecognitionisattractingmoreandmoreattention.Concretely,skeleton-basedmethodscan 

effectively focus on the joint transformation of different actions by discarding redun-dant 

background information. A more robust and more efficient network based on skel-eton 
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data can be designed to recognize human actions than the RGB-based methods. Andthe 

most important thing is that skeletal data can articulate joints connection status 

andtheirdynamicchanges. 

 

Previous work construct the joint coordinates manually into a sequence of 

vectors(Vemulapallietal.2014;Jiangetal.2020).Thentherecurrentneuralnetwork(RNNs)is 

utilized to process the vectors (Liu et al. 2016; Song et al. 2017; Zhang et al. 2017;Zheng 

et al. 2019). Alternatively, the skeleton joints are composed into a 2D pseudo-

image.ThenaCNN-

basedmodelisabletogeneratethefinalprediction(Liuetal.2017;Lietal.2017a,b;Zhangetal.2019

;Wangetal.2021).However,boththeRNN-basedandCNN-based methods do not explicitly 

take advantage of spatial relationships and temporaldynamics. Therefore, a series of graph 

convolutional networks (GCNs) are proposed forskeleton-based action recognition (Yan et 

al. 2018; Shi et al. 2019a, b; Tang et al. 

2018;Chengetal.2020;Songetal.2021;Shietal.2020;Pengetal.2021;Liuetal.2021;Xieet al. 

2021; Ahmad et al. 2021; Yoon et al. 2021). Inferred from CNNs, GCNs are able 

toprocess non-Euclidean data such as skeleton graphs through the regulation of the 

kernelsize and the promotion of the convolution operation. Subsequently, a graph 

convolutionmodule is widely used to construct the spatial–temporal GCN. Most of the 

GCN-basedmethods emphasize the improvement of a structure to obtain optimal spatial–
temporalrepresentations. 

Finally, the spectral features are combined with the spatial–temporal features 

extractedfrom the vertex stream to recognize the action. Compared with our previous SS-

GCN, themaincontributions are summarized as follows: 

– To extract spatial–temporal information more effectively, the shift operation on 

thegraphisemployedtoourvertexstreaminspiredbyShift-

GCN(Chengetal.2020).Thisarticle further explores the effectiveness of the 

complementation of the vertex-domainand the spectral-domain features through a more 

efficient spatial–temporal stream,which proves the previous GCN is flawed in this task 

for some actions rely on globalinformation. 

– AmorerobustspectralGCNsbackboneconsistingofRSBsisproposed,provingtobe more 

effective in extracting spectral features for action recognition. Though 

someexperimentsshowthatspectral-basedGCNperformsinferiortospatial-basedGCNin 

some computer vision tasks, our RSB shows particular improvement to the 

simplespectral-basedGCNsadoptedbyourpreviousSS-GCNowingtothedeeparchitecture. 

– In previous work, the motivation of the combination of the spatial–temporal informa-

tionandthespectralinformationisnotwellexpressedandsupported.Atthesametime,this 

paper proposes using spectral-domain information to make up for the weak rec-

ognitionabilityofpreviousGCNsinsomeactions.Ananalysisoftheimprovement of each 

action category by the spectral-domain information is provided in the 

ablationstudy. 

– More extensive experiments and more comprehensive analyses are performed. 

Owingto the improvement on both the spectral stream and the spatial–temporal stream, 

DD-GCNhasgreatlyimprovedourpreviousmodelSS-

GCN.withanincreaseof5.3%/5.5%on the NTU-RGBD 60 dataset (Shahroudy et al. 

2016). The top-1 and top-5 accuracyon the Kinetics-Skeleton dataset (Kay et al. 2017) 

are also improved by 0.9%/2.0%.Additional experiments on NTU-RGBD 120 (Liu et 

al. 2020) are performed and com-paredwith the SOTA. 
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2 Relatedwork 
 

Owing to the effectiveness data, there is more and more research focusing on skeleton-

based action recognition. The skeleton data that indicates the coordinates dynamics 

showsrobustness against illumination change, background variation, and body diversity. 

Themethods are composed of the handcraft-feature methods and the deep learning 

methods.One typical handcraft feature is based on the theory of Lie Group (Vemulapalli et 

al. 2014;Jiang et al. 2020; Fernando et al. 2015). Vemulapalli et al. (2014) propose a Lie-

groupskeletal representation that uses rotations and translations in 3D space to model the 

3Dgeometric relationships between different body parts specifically. Inspired by this 

work,Jiang et al. (2020) create a new spatial–temporal skeleton transformation descriptor 

(ST-STD) to obtain a comprehensive view of the skeleton in both spatial and temporal 

domainfor each frame, followed by a denoising sparse long short term memory (DS-

LSTM) net-work. Fernando et al. (2015) use the parameters from the ranking functions per 

video as anewvideo representation. 

However, the deep learning features are more substantial than the handcraft-

featuremethods due to various deep models such as RNNs and CNNs. RNNs-based 

methods canextract the dynamic information with the ability of modeling sequences (Du et 

al. 2015;Liu et al. 2016, 2018; Song et al. 2017; Zhang et al. 2017; Li et al. 2018; Zheng et 

al.2019). Du et al. (2015) propose an end-to-end hierarchical RNN for skeleton-based 

actionrecognition, based on the ability to model the long-term contextual knowledge of 

temporalsequences of the RNNs. Liu et al. (2016) further propose a tree-structure traversal 

methodbased on LSTM to deal with occlusion and noise in human skeleton data. To make 

betteruse of the multi-modal features extracted for each joint, then they (Liu et al. 2018) 

intro-duce a feature fusion method within the trust gate ST-LSTM unit. Song et al. (2017) 

com-bine the spatial attention subnetwork and the temporal attention subnetwork with the 

mainLSTM network to pay various levels of attention to different frames. Zhang et al. 

(2017)proposeatwo-streamViewAdaptivenetworkforskeletonactionrecognitiontoelimi-

natetheinfluenceoftheviewpointsbycombiningRNNfeatureswithCNNfeatures.Lietal.(2018)i

ntroduceanindependentlyRNN(IndRNN)architecturetoovoidthegradient vanishing while 

learning long-term dependencies. Zheng et al. (2019) integrate the atten-

tionmechanismintoLSTMtomodelspatialandtemporaldynamicssimultaneously. 

 

Meanwhile,byformingtheskeletonintopseudo-images,CNN-basedmethodsarealso widely 

studied (Ke et al. 2017; Liu et al. 2017; Kim and Reiter 2017; Li et al. 2017a,b; Cao et al. 

2019). Ke et al. (2017) introduce a manual clip generation method for 

theskeletonjointsofeachframewhichareplacedasachainbyconcatenatingthejoints.Liuet al. 

(2017) present an enhanced visualization method for skeleton data according to aview-

invariant transform, an image colorization, and a CNN-based model. Kim and 

Reiter(2017) re-design the Temporal Convolutional Neural Networks (TCN) to learn the 

spa-tial–temporal representations of the human skeleton data. Li et al.
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2.1 Graphconvolutionalneuralnetworks 

 
Nevertheless,neitherCNNsnorRNNsprocessthenon-

Euclideangraphsdirectly.Boththesequences in RNNs and the grids in CNNs have flaws 

while blending spatial and tempo-ral patterns. Therefore, several GCN-based models are 

proposed to capture spatiotemporalfeatures from graphs (Yan et al. 2018; Shi et al. 2019a, 

b; Peng et al. 2021; Liu et al. 2021;Xie et al. 2021; Ahmad et al. 2021). Inferred by CNNs, 

these GCNs avoid the handcraftedpart-assignment. Yan et al. (2018) propose to treat the 

skeleton sequences as spatiotempo-ral graphs and extend CNNs to the vertex domain of 

the graph by a spatiotemporal GCN(ST-GCN). The spatiotemporal information is shown 

vital for trajectory data in differentdomains (Knauf et al. 2016). Unlike CNNs, the 

convolution operation in the GCNs unitcontains the input data and learnable weights and 

the adjacency matrix of the graph dem-onstrating the spatiotemporal connection. By 

constructing a naturally connected skeletongraph, ST-GCN eliminates the need to specify 

the data structure manually. Si et al. (2019)combine vertex-domain graph convolution with 

LSTM to capture features in both spatialconfiguration and temporal dynamics. Based on 

ST-GCN, Shi et al. (2019a) raise a two-streamadaptiveGCN(2s-

AGCN)toobtainthejointandthesecond-orderinformationof the skeleton data. They add 

learnable adaptive parameters to the adjacency matrix toimprove the limitations of natural 

connection in ST-GCN. Then 2s-AGCN is extended toMS-AAGCN (Shi et al. 2020) by a 

multi-stream architecture which combines the informa-

tionfrombothjointsandbones,aswellastheirmotiontrends.AnotherworkfromShiet al. (2019b) 

propose a directed graph network (DGN) to model joints and bones in 

thenaturalhumanbody,whicharerepresentedasadirectedacyclicgraph(DAG).Chenget al. 

(2020) propose a novel shift operation for spatial GCNs based on the previous work,which 

greatly reduces the GFLOPs and increases the inflexibility of the receptive fields.Inspired 

by this work, our vertex-domain stream consists of spatiotemporal shift GCNblocks, 

which is more effective while extracting non-local relationships between 

spatialandtemporaldomains. 

 

Estrach et al. (2014) exploit a global structure of the graph with the spectrum of 

itsgraph-Laplacian matrix to generalize the convolution operator from CNNs. A vanilla 

GCNin the spectral domain is proposed by constructing a graph spectral convolution layer, 

inwhich the spatial filter is replaced with a spectral filter. Henaff et al. (2015) develop 

animproved spectral GCN by smooth the spectral filters. By smoothing the spectral filters 

inthe spectral domain, a more localized filter in the space domain is obtained faster 

duringthedecay.Defferrardetal.(2016)learnthefunctionsoftheLaplaciandirectlytoavoidtheeig

endecompositionwhilecalculatingthespectralconvolution.InspiredbyChengetal.(2020), a 

dual-domain graph CNN is proposed to capture both spatiotemporal and 

spectralinformation with two kinds of graph convolution operators. Inferred by ResNet, a 

novelresidual-connectedspectralbackboneisproposedtoavoidgradientvanishing. 
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3 Graphconvolutionoperations 
 

Thissectionintroducestwosortsofgraphconvolutionoperationsaccordingtographsignalproces

sing(GSP) for skeleton actionrecognition. 

 
3.1 Vertex‑domaingraphconvolution 

 
GCNs have been a widely used architecture since the work of Yan et al. (2018). By con-

structing the skeleton data into graph G = (V, E) with N joints and T frames, a vertex-
domaingraphconvolutionoperationisdefinedwiththethoughtoftemplatematching. 

Because of the absence of node ordering and the structure diversity, the simplest way 

todesignatemplatetocalculatetheconvolutionistouseascalarforallneighbors.Givenan input 

vector h of l thlayer in a GNN, the vertex-domain scalar convolution is shown asfollows: 

 

hi
l+1= σ , 

j∈Ni 

 
w

l
,h

l
 , 

 
(1) 

where⟨, ⟩ is the product operation andis the activation function. w
l∈ R is the 

templatevector to obtain neighborhood information in layer l. And Ni denotes the set of all 

neighbornodesofnodei.Forageneralconvolutioningraphneuralnetworks,thefollowingformul
a 

is obtained: 

 

 

 

 

 
 

 

Fig.1Illustrationoftheskeletongraphforvertex-domaingraphconvolution.Thebluedotsrepresentingthe body joints 
are connected in both spatial and temporal domain. For the vertex-domain convolution, theyare divided into 
three handcrafted subsets: root subset Bs0, centripetal subset Bs1 and centrifugal subset Bs2(Colorfigure 

online) 
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3.2 Spectral‑domaingraphconvolution 

 
Inskeletonactionrecognition,thelatestmethodsalltreatjointsandbones,aswellastheirmotiontra

jectories,asaspatiotemporalgraphtoperformvertex-domainconvo-lution operations. 

However, since the skeleton data is regarded as graphs, the ignoredspectral-domain 

information is also vital according to the Spectral Graph Theory. Theanalysis of the 

properties of a graph concerning the characteristic polynomial, eigenval-

ues,andeigenvectorsoftheLaplacianmatrix,isthemainpartofspectralgraphtheoryinmathemati

cs. 

Thespectralconvolutionisperformedbythefollowingsteps:GraphLaplacian 

matrix,FourierfunctionsandFouriertransform,Convolutiontheorem.TheNthskel-

etonsequenceintimeTisconvertedtoaspatiotemporalgraphG=(V,E).Accordingtospectralgrap
htheory,TheAdjacencymatrixisrepresentedasA.Anotheressential 

operatoristhegraphisLaplacianmatrixL.AndthesimpleLaplacianmatrixisdefined 

asL = D − A ∈ R
n×n

.D = diag(d(v1), … , d(vN )) ∈ 
R

n×n
isthediagonaldegreematrixandd(⋅)isthedegreeofnodevi.ThenthenormalizedLaplacianmatrixi

sdefinedas 
–1 −1 −1 −1 

    

L=D2(D−A)D2=I−D2AD 2. 

ItisobviousthattheLaplacianmatrixLisarealsymmetricmatrix.Givenavector 

relatedtovertexvi,histheoutputvectorbycalculatingtheproductoftheLaplacianmatrixLand  

.Anditsphysicalimplicationcanbeclarifiedwiththefollowingformula: 

h=L=(D −A)=D−A  , 

 

h[i]=d(vi)[i]− 

, 

 
vj∈N(vi) 

Ai,j[i] 

, 

= 
vj∈N(vi) 
, 

= 
vj∈N(vi) 

1⋅[i]− 
vj∈N(vi) 

([i]−[j]), 

1⋅[j] 

wheretheoutputvectorhrepresentsthedifferencebetweenvianditsneighborvertexvj. 
LaplacianmatrixisalsoapositivesemidefinitematrixandcanbeprovedwithEq.5 

bythefollowingformula,thequadraticformofL: 

f⊤Lf= 
 

vj∈V 

[i] ([i]−(j)) 
vj∈N(vi) 

,, 

= ([i]⋅[i]−[i] ⋅[j]) 
vi∈Vvi∈N(vi) 

,,1 
= [i]⋅[i]−[i]⋅[j]+ 

 
1
[j]⋅[j] 

v∈Vv∈N(v)
2 2

 
i i i 

1,, 
= ([i]−[j])2

. 
2

v∈Vv∈N(v) 
i i i 

As shown in Eq. 7, the quadratic form of the Laplacian matrix L is the sum of the 

squaresofthedifferencebetweeneachvertexanditsneighborhoodsinagraph.Frombothperspec-

tives in Eqs.5 and 7, the physical implication of the Laplacian matrix is that it is a meas-
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ureofthedifferencebetweeneachnodeanditsneighbornodesinthegraph.Thisisquite 
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differentfromtheAdjacencymatrixappliedinvertex-

domaingraphconvolutionoperation,whichprovides thestrength ofthe connectionof theedge 

betweennodes. 

ThevitalLaplacianmatrixLispreciselythebasiccontentofgraphspectralconvolu-

tionoperation.Theconvolutioninthevertexdomaincannotbeexpressedasameaning- 

fuloperatorroughly.However,theconvolutionoperator∗Giseasilydefinedinthespectraldomainaccor

ding to graph convolution theorem: 
 

w∗Gh=U  U
T
w⊙U

T
,h  , 

 
 

 
 

Fig.6Examplesforclass“handwaving”.Theredlineandgreendotsrepresenttheskeletons(Colorfigureonline

) 

  

w

∗
G

h

=

U 

International Journal of Engineering Science and Advanced Technology (IJESAT) Vol22 Issue 01,2022

ISSN No: 2250-3676 www.ijesat.com Page 8



 

 

 
 

3.2.1 NTU‑RGBD120dataset 
 

NTU RGBD 120 dataset is an extended version of the NTU-RGBD 60 dataset by 

addinganother60classesandanother57,600video/skeletonsamples.Itconsistsof114,480action

samples divided into 120 action classes. The number of persons of different ages 

increasesto106.ThesamplesarecapturedinthreeangleswhichisthesameasNTU-

RGBD60.Theskeleton data employed in this work consists of 25 human joints, as shown 

in Fig. 6. Thetwo benchmarks are also defined as CS and CV. The action can be categories 

into 

DailyActions(82),MedicalConditions(12),andMutualActions/TwoPersonInteractions(26). 

 
3.2.2 Kinetics‑Skeletondataset 

 
Kinetics is an activity recognition dataset for RGB-based action recognition, which con-

sists of 300,000 videos clips in 400 classes (Kay et al. 2017). Yan et al. (2018) construct 

askeleton data based on it by extracting 18 body joints for each frame with an open-

sourcetoolbox OpenPose. Then the large-scale skeleton-based dataset called Kinetics-

Skeleton isobtained. The training data is set to 240,000 skeleton clips, and the test data 

consists of20,000 clips. This dataset is challenging, so both the top-1 and top-5 accuracies 

are presentasother methods do. 

3.3 ImplementdetailsofDD‑GCN 

 
The DD-GCN is implemented with Pytorch deep learning framework. Some hyperparam-

eters are needed for both the vertex-domain stream and the spectral-domain stream. 

ForNTU-RGBD 60 dataset and NTU-RGBD 120 dataset, the optimizer is SGD 

(stochasticgradientdescent)method.Andthelossfunctioniscross-

entropyloss.SimilartoChenget al. (2020), the weight decay and initial learning rate of the 

vertex-domain stream are setto 0.0001 and 0.1. The learning rate decays by 10 at epoch of 

60th, 80th, 100th. For spec-tral-domain stream on NTU-RGBD 60 dataset and NTU-

RGBD 120 dataset, the weightdecay and initial learning rate of the vertex-domain stream 

are set to 0.003 and 0.1. Thelearningrate decays by 10 at epochof 30th, 40th. 

FortheKinetics-

Skeletondataset,theSGDisadoptedastheoptimizer.Thesettingsofweightdecayandtheinitiallea

rningratearethesamewithNTU-RGBDdatasetsinthe vertex-domain stream. For spectral 

stream, the weight decay, Nesterov momentum forSGD, the base learning rate is set to 

0.001, 0.9, 0.001. The learning rate decays by 10 atepochof 45th, 55th. 
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3.3.1 RSBstrategies 

 
The effectiveness of the spectral-domain backbone, which adopts the residual-

connectedspectral block, is evaluated in Table 1. Compared with the stream adopting 

simple spectralgraph convolution, the residual spectral stream demonstrates a better 

performance with anincrease of 15.1% and 12.9% on NTU-RGBD 60 CS and CV. Some 

recent experimentsshow that spectral-based GCN performs inferior to spatial-based GCN 

in some computervision tasks. However, our experiments based on the RSB backbone 

show a certain devel-

opmentpotentialofthespectralconvolution.Thecriticalproblemofthepreviousspec-tral 

convolution network lies in relatively shallow architecture. At the same time, residual-

connected architecture for the spectral-domain stream of DD-GCN is capable of 

capturingdeep spectral information. While combined with the vertex-domain stream, 

which focuseson the spatiotemporal information, the residual DD-GCN has a superior 

performance withanincreaseof1.1%and0.7%onCSandCV.Incontrast,thesimpleDD-

GCNseemsstren-uoustoobtain adequatespectral informationforthe vertex-domainstream. 

 

 

 

Table1TheablationstudyonNTU-RGBDdatasetdenotingtheeffectiveness of the Res-SpectralUnit

Methods CS(%) CV(%) 

SimpleSpectralStream 55.2 65.3 

ResidualSpectralStream 70.3 78.2 

Vertex-domainStream(Shift) 87.8 95.1 

DD-GCN(Simple) 88.6 95.3 

DD-GCN(Residual) 88.9 95.8 
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Fig.7Illustrationoftheperformancegain(%)ofthespectral-domainstreamwithrespecttothevertex-domain stream on 

the NTU-RGBD 60 dataset for the CS setting. The vertical axis is calculated by subtract-ing the DD-GCN 

accuracy of each action from the vertex-domain stream. The horizontal axis denotes theclassof action as 

provided in Shahroudy et al. (2016) 

 
 

3.3.2 ExperimentsonNTU‑RGBD120dataset 

 
On NTU-RGBD 120 Dataset, two standard evaluation protocols are applied in Liu et 

al.(2020). The comparison results are shown in Table 5. The experiment accuracy of DD-

GCN is 84.9% for the CS set, 86.0% for the CV set. Compared with 3s RA-GCN, ourtwo-

stream model has a 3.8%/3.3% increase on CS and CV set. The performance oftwo-

streamST-TR-AGCN(Plizzarietal.2021)concatenatingspatial–temporalmod-ule with self-

attention mechanism is 2.2%/1.3% lower than DD-GCN. The DD-GCNachieves 0.7% 

higher accuracy on CS set and 0.5% higher on CV set than the work 

inWangetal.(2021).ThisdemonstratesthesuperiorityofourGCNmodelthatutilizestheresiduals

pectralstreambasedonthespectral-domaingraphconvolution. 

The results of DD-GCN on the NTU-RGBD 120 dataset are 0.4% lower than 2s Shift-

GCN, which superimposes the same backbone repeatedly with additional 

preprocesseddata,thebonegraphs(thedifferentialofspatialcoordinates).ComparedwiththeSO

TA4s Shift-GCN, our results are slightly inferior but with much lesser parameters. 

Neverthe-

less,ourworkhasbenefitedbyfusingtwodistinguishinggraphconvolutionoperators.The 

experiment results show that our two-stream network is reasonable and practical 

toobtainthelocaldiversitiesandtheglobaldynamicsevenwithoutadditionaldata. 
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Table5ThecomparisonsofexperimentresultsonNTU-RGBD120dataset 
 

Methods CS(%) CV(%) Year 

ST-LSTM(Liuetal.2016) 55.7 57.9 2016 

SkeleMotion(Caetanoetal.2019) 67.7 66.9 2019 

TSRJI(Caetanoetal.2019) 67.9 62.8 2019 

Part-AwareLSTM(Liuetal.2020) 55.7 57.9 2020 

2sShift-GCN(+bones)(Chengetal.2020) 85.3 86.6 2020 

4sShift-GCN(+bonesandmotions)(Chengetal.2020) 85.9 87.6 2020 

FuzzyCNN (Banerjee et al. 2021) 74.8 76.9 2021 

AMV-GCN(Liuetal.2021) 76.7 79.0 2021 

3sRA-GCN(Songet al.2021) 81.1 82.7 2021 

ST-TR-AGCN(Plizzarietal.2021) 82.7 85.0 2021 

SEMN(Wangetal.2021) 84.2 85.5 2021 

DD-GCN(ours) 84.9 86.0 2021 

Experimental resultsandthe state-of-the-artarehighlightedin bold 

 

 
4 Conclusion 

 
In this paper, a dual-domain GCN (DD-GCN) for skeleton-based action recognition 

isproposed. We integrate spectral-domain information with spatial–temporal 

informationthrough an end-to-end two-stream architecture. A spectral-GCN backbone is 

proposedbased on the spectral-domain graph convolution. Compared with the previous 

GCN, whichonly focuses on the spatial–temporal information of the skeleton graphs, we 

explore thecomplementary spectral-GCN architecture and the necessity. With a deep 

residual-con-nected RSB backbone, the accuracy of most actions has been improved, 

primarily theactions with broader dynamic changes in global. The experiment results on 

three large-scale datasets demonstrate the effectiveness of our DD-GCN. The ablation 

studies explorethe reasons for the superiority of DD-GCN for the task of skeleton-based 

action recog-nition. The extensive experiments on three large-scale datasets, NTU-RGBD 

60, NTU-RGBD 120, and Kinetics-Skeleton, show competitive or state-of-the-art 

performance. Inthe future, we will optimize the spectral-domain backbone for skeleton-

based action rec-ognitionandhopetoinspiremoreworktofocusonthedual-

domaingraphconvolutions. 
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